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Abstract. While providing powerful solutions for many problems, deep
neural networks require large amounts of training data. In medical image
computing, this is a severe limitation, as the required expertise makes
annotation efforts often infeasible. This also applies to the automated
analysis of hematopoietic cells in bone marrow whole slide images. In
this work, we propose approaches to restrict a neural network towards
learning of rotation invariant or equivariant representation. Even though
the proposed methods achieve this goal, it does not increase classification
scores on unsupervisedly learned representations.

1 Introduction

Analysis of hematopoietic cells in bone marrow samples is a critical step for diag-
nosis of many hematological diseases, e.g. leukemia. Currently, medical experts
have to manually perform the tedious task of identifying and counting a large
number of cells in bone marrow slides. An automated analysis, particularly the
classification of various cell types, is a challenging problem but could potentially
improve throughput as well as objectivity.

While supervised learning of deep neural networks was shown to be a promis-
ing approach [1], it requires a large number of manually created expert annota-
tions. Since this is a time-consuming task, it is infeasible to rely solely on fully
supervised methods. Cell detection, however, is comparatively simple [2]. Fur-
thermore, manual validation of automated detection results can be performed
by non-experts in short time. Consequently, there is an abundance of patches
centered around an individual cell (of unknown type) that can be used for un-
supervised representation learning.
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Fig. 1. Overall pipeline.
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In this work, we focus on auto-encoders [3], which allow extracting a repre-
sentation of an image in the bottleneck by minimizing a reconstruction loss. As
cells occur in arbitrary orientation, a network often learns different representa-
tions for the same cell type – even when using rotation augmentations. Finding
rotation invariant representations is not straight-forward as the auto-encoder re-
quires orientation information to reconstruct an image. As the classification of
cell types is inherently rotation invariant it would be desirable to have rotation
invariant representations as well.

A typical solution is data augmentation [4]: training a network with arbitrar-
ily rotated images to force it to learn valid representations for each angle. How-
ever, the network still learns multiple representations even for the same image.
Intrinsically rotation invariant operations in the network architecture therefore
offer a more suitable solution. The HNet [5] uses harmonic convolutions instead
of classical convolutional layers to make each operation rotation invariant or
equivariant (depending on the chosen rotation order). Even in theory, however,
a rotation invariant network cannot be used for reconstruction with the orienta-
tion information missing in the representation. Additionally, the proposed HNet
is shallow and not suitable for the complex data of hematopoietic cells.

We thus propose the following approach (Fig. 1): A spatial transformer net-
work (STN) [6] is used to normalize the images in rotation direction by minimiz-
ing the Kullback Leibler (KL) Divergence [7] between two rotated versions of the
same image. A rotation invariant network architecture finds a rotation invariant
representation of these normalized images. All methods are further evaluated
with respect to the suitability of learned representations for supervised cell clas-
sification.

2 Materials and methods

2.1 Image data

The dataset consists of several Whole Slide Images (WSI) of human bone mar-
row, acquired with a 63× magnifying lens and automated immersion oiling. Each
sample is pre-processed with Pappenheim staining to highlight hematologically
relevant structures. In this work, we utilize patches of size 256 × 256 px2 cen-
tered around an individual cell. The cell positions are determined automatically
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Fig. 2. One sample patch of each cell type. Left (neutrophilic granulocytes): promye-
locyte, myelocyte, metamyelocyte, band and segmented granulocyte. Right: polychro-
matic, orthochromatic and basophilic erythroblast, lymphocyte and eosinophilic gran-
ulocyte.

using U-Net [8] and Watershed [9] and subsequently manually validated and,
if necessary, corrected. Hematological experts assigned each patch a cell type
corresponding to the cell in the center, which might be surrounded by other cells
as well. This results in a dataset of 6 085 samples of ten different cell types, as
shown in Fig. 2.

A larger unlabelled dataset is employed to learn representations in an unsu-
pervised fashion. This dataset contains approx. 11 000 patches centered around
a cell of unknown cell type each from different images than the fully labelled
dataset. It should further be noted that the influence of surrounding cells on
image reconstruction tasks is reduced through decreasing the influence of pixels
on the loss based on their distance to the center. This is a necessary prerequisite
as surrounding cells are neither generally relevant for the classification of the cell
nor rotation-invariant per se.

2.2 Rotation Loss

We apply a rotation loss by sending two arbitrarily rotated versions of an image
through the network and comparing the output representations. As the represen-
tation of a Variational Auto Encoder [10] is described by a Gaussian distribution
with mean µ and variance σ2, we can compute the similarity between representa-
tions using the Kullback Leibler (KL) divergence [7] dKL. We use the symmetric
KL divergence of the two representations as an additional loss term, which pe-
nalizes representations that differ from the representations of rotated versions of
the same image

2.3 Harmonic Convolutions

Using spherical harmonics in convolutional layers, a specific rotation order can
be enforced as shown in the HNet [5]. In our work, we use the proposed defini-
tions for invariance and equivariance: a mapping is rotation equivariant if and
only if each rotation in the image domain can be associated with a unique trans-
formation in the feature domain. For invariance, the transformation needs to be
the identity function.

In HNet, rotation equivariance is achieved by restricting the filters of con-
volutional layers to be of the form Wm(r, θ,R, β) = R(r)ei(mθ+β), where (r, θ)
are the polar coordinates of the input feature map, R and β are learned by the
network and the rotation order r is a meta parameter that is chosen within the
architecture design. Rotational invariance requires rotation order r = 0, while
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Fig. 3. Results in terms of KL Divergence between the representations of different rota-
tions of test images. For each of the networks types, three different rotation loss weight
factors are tested.

equivariance only requires the existence of a unique rotation order. In this paper,
rotation order r = 2 is chosen for rotation equivariant networks.

Since the originally proposed network is comparatively shallow, we introduce
a ResNet-like architecture that is deeper and has residual connections [11]. In
order to keep the rotation order consistent, we enforce that the rotation order
of sub-networks skipped by a residual connection is zero. We further apply Har-
monic Batch Normalization. As it is not possible to use a stride larger than one
or maximum pooling with equivariant convolutions, we employ average pooling
for downsampling.

2.4 Experimental setup

For the evaluation, several VAEs are trained unsupervisedly using reconstruc-
tion losses to learn a useful representation of hematopoietic cells. To this end,
the dataset with unlabeled cell patches is employed in six-fold cross-validation.
Training is performed using the Adam optimizer until an early stop criterion
based on a separated validation set is reached. First of all, the reconstruction
quality is evaluated in terms of SSIM between original and reconstructed images
of the test sets. Secondly, the network is used to extract representations (feature
vectors) of the dataset with labelled cell patches. These vectors are used as input
to a shallow classification network, which is evaluated in terms of F1-score in
five-fold cross-validation.

Each VAE has a Spatial Transform Subnetwork and utilizes the weight ro-
tation loss wLrot with the weight w ∈ [0.2, 0.5, 0.9]. The network is either a
classical VAE (denoted as only-STN ), a VAE with harmonic layers of rotation
order zero (inv-HNet) or a VAE with harmonic layers of rotation order two
(equ-HNET ). As a baseline, we us a normal VAE without additional efforts to
establish rotation invariant representations.

3 Results

Fig. 3 shows the KL Divergence between representations of test images in dif-
ferent rotations. Fig. 4 shows reconstruction results for three sample images. All
methods yield representations that fulfill the desired condition: being invariant
with respect to rotation of input images. As expected, this effect is stronger
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Fig. 4. From left to right: original image, baseline reconstruction, reconstructions from
only STN, equivariant HNet and invariant HNet (with rotation loss weight w = 0.5
each). Note that effects at the patch border are due to the surrounding cell suppression.

with larger weights for the rotation loss. Visual inspection of the reconstructions
suggests that the network achieves rotation invariance or equivariance mostly
through reconstructing a rotation symmetric image.

Fig. 5 shows the corresponding classification results on labelled cell images. It
can be seen that the representations from networks trained with rotation invari-
ance methods have generally lower or similar scores compared to the baseline.
For most methods, a higher rotation loss weight yields a lower classification score.

4 Discussion

The qualitative results suggest that the presented methods to obtain rotation
invariant or equivariant representations mostly achieve this by learning rota-
tion symmetric reconstructions. While this lowers the reconstruction accuracy
slightly, it has a larger impact on classification accuracy with learned repre-
sentations. Enforcing rotation invariant harmonic convolutions (rotation order
zero) is most detrimental to the F1-score, while harmonic networks with rotation
order two perform slightly better. The trend generally shows that the learned
embeddings are less descriptive with respect to the classification of cell types
with higher focus on rotation invariance or equivariance. With low rotation loss
weight and no harmonic convolutions, similar results compared to the baseline
can be reached while having a more rotation independent model.

It remains to be evaluated whether the restriction to a rotation invariant
representation is a beneficial constraint in semi-supervised learning approaches.
As it has been shown that domain-dependent suitable constraints improve semi-
supervised strategies, it could be a valuable approach in these settings. Further-
more, losses that penalize purely rotation symmetric reconstructions for non-
symmetric images might increase the usefulness of the presented methods. Fur-
ther research should include the amount of labelled data as well as additional
augmentations.
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Fig. 5. Classification results using the learned representations. Lighter colors indicate
lower values for the rotation loss weight (from top to bottom: 0.2, 0.5 and 0.9).
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