A Machine Learning Approach Towards Fatty Liver
Disease Detection in Liver Ultrasound Images

Adarsh Kuzhipathalil', Anto Thomas', Keerthana Chand!,
Elmer Jeto Gomes Ataide?, Alexander Link?*, Annika Niemann
Sylvia Saalfeld®®, Michael Friebe?, Jens Ziegle?

3,5
b

!Faculty of Computer Science, University of Magdeburg, Germany
2INKA-Application Driven Research, University of Magdeburg, Germany
3Department of Simulation and Graphics, University of Magdeburg, Germany
4Department of Gastroenterology, Hepatology and Infectious Diseases, University of
Magdeburg
SSTIMULATE Research Campus, University of Magdeburg

adarsh.kuzhipathalil@st.ovgu.de

Abstract. Fatty liver disease (FLD) is one of the prominent diseases
which affects the normal functionality of the liver by building vacuoles of
fat in the liver cells. FLD is an indicator of imbalance in the metabolic
system and could cause cardiovascular diseases, liver inflammation, cir-
rhosis and furthermore neoplasm. Detection and specification of a FLD
are beneficial to arrange an early and best adapted treatment. We
present a computer aided diagnostic (CAD) tool for FLD detection using
ultrasound images. The developed pipeline consists of separate segmen-
tation and classification modules. During the development phase these
modules were trained on 6 patient cases and validated with 2. The whole
model was evaluated on a totally different set of data with 5 patient
cases and performed with an overall classification accuracy of 0.84. The
model showed impressive performance considering the size of training
data. Also the multi-module architecture enables the predictions from
the model to be better explainable.

1 Introduction

The liver has a significant role in detoxification protein synthesis and production
of chemicals that helps in proper digestion. There are few diseases which affects
its notmal functionality. Examples of liver disease include: Fatty liver disease
(FLD), cirrhosis and cancer. Our study mainly concentrates on FLD. Blood
tests, liver ultrasound (US) imaging, computed tomography and liver biopsy
can be employed to detect and diagnose FLD [1].

US imaging is more common due to its lower cost and its non-invasive nature.
FLD diagnosis often depends of the subjective judgement of the physicans due
to differences in US equipment, poor image quality and the physical differences
of patients. As physicians depend on different aspects of the US image for



A ML Approach Towards FLD Detection 87

diagnosis, there are high variations in diagnosis which often depends on the
experience of the physicians. Incorrect diagnosis could lead to wrong and contra-
productive treatment, e.g. wrong concentration of medication may harm the
patient. Previously published works on FLD [2] and diffused liver disease [3]
detection in US images was successful in developing computer aided diagnostic
(CAD) tools which aided the physicians in the diagnosis. Both of these works
gives out one single prediction for the whole US image. We developed the tool
which help in detecting fatty tissue in the US image and generate the prediction
in such a way that it is better explainable for physicians with different levels of
experience.

2 Material and methods

The major distinguishing character is the difference in texture patterns between
fatty and non-fatty liver observed from US images. The FLD detection problem
can essentially be modelled as a pattern recognition problem by extracting the
texture features from respective classes and further building the classifier. There
are previous efforts in developing similar pipelines for liver US images. Fractal
Dimension Texture Analysis (FDTA), the Spatial Gray Level Dependence Matri-
ces (SGLDM), the Gray Level Difference Statistics (GLDS), the Gray Level Run
Length Statistics (RUNL), First Order Gray Level Parameters (FOP), Gray
level Co-occurrence matrix (GLCM) and Wavelet Transforms (WT) are some
commonly used texture feature extraction techniques [3, 4].

For developing the FLD detection pipeline, we have generated a dataset
consisting of 13 patient cases in total. In the course of development 8 out of
13 were used and the remaining 5 were used to test the system at the fully
developed stage. The study was performed according to the “World Medical
Association Declaration of Helsinki - Ethical Principles for Medical Research
Involving Human Subjects.” All subjects included in the study provided written
informed consent and the study protocol was approved by the local Institutional
Review Board of Otto von Guericke University, Magdeburg. All images were
anonymized prior to analysis.

The dataset was generated by two US systems (Philips iU22 and GE LOGIQ
E10) consisting 964 images in total in fatty class and 1060 images in non-fatty
class. The images were stored in JPEG format. The datasets were labelled
according to the clinical diagnostic outcome. Segmentation ground truths were
generated with the help of an experienced hepatologist. These were chosen in
such a way that these contained only the characteristic liver texture excluding
vessels and border tissues. This means that the segmentation masks did not
necessarily contain the whole liver parts in the US image. Also the non fatty
regions inside the fatty liver samples were not considered differently while gen-
erating the segmentation masks. This was done to enable a pipeline to classify
similar regions without explicitly training on such regions. Furthermore, this
dataset was used in the machine learning (ML) pipeline for feature extraction
and classification.
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2.1 Training and output pipelines

The training phase of the pipeline is split in two different branches (Fig 1). The
input dataset consists of fatty and non-fatty liver US images and the correspond-
ing segmentation masks. The first branch takes the data and converts it to liver
and background classes. The liver and background classes along with the labels
makes up the training data for the first module. One the other branch, just the
region of interest is extracted using the segmentation masks. Which means only
the liver portion of the US image is selected and grouped as fatty and non-fatty
class. These two classes along with the corresponding labels are used as the
training data for the second module.

Before the feature extraction was performed on the US images, the images
were converted into patches. The texture features were extracted from these
generated patches since a global feature vector from the whole image is ineffi-
cient in case of US image texture, as the texture has large variations throughout
the image. Overlapping patches were used in this case. This helped in better
usage of the available data. The optimal patch size was found out to be 30x30
pixels. This was evaluated by experimenting with multiple patch sizes ranging
from 10x10 till 50x50 pixels. Smaller patches failed to extract the texture char-
acteristics and on the other hand larger patches resulted in extracting features
from a mix of different textures.

For the prediction and visualization (Fig. 2), the input image is first given to
the segmentation module and then to classification module to produce the final
prediction results. For both the pipelines, feature importance studies and feature
reduction methods using Principal Component Analysis (PCA) were performed.
For the segmentation and classification modules random forest classifier was
trained with the corresponding set of reduced features.

2.2 Texture feature extraction

Feature extraction step in the pattern recognition problem is the crucial and
most influential step of the whole pipeline as it encodes the input image. The
encoded features were used in the further decision process. The choice of features
directly impacts the accuracy and the generalization of the classes of interest,
in this problem the non-fatty and fatty liver tissues. In our approach we used
90 features in total. The majority of features (84) were extracted from Discrete
Wavelet Transform (DWT) methods and 6 features from the GLCM.

The discrete wavelet transform (DWT) is performed using a set of 7 discrete
wavelets namely Daubechies, Haar, Biorthogonal, Reversebiorthogonal, Symlets,
Coiflets, and Mayer wavelets. These wavelets have different scales and transla-
tions. DWT decomposes the signal into mutually orthogonal sets of wavelets.
The mean, variance and entropy were calculated for each patch decomposed
using the seven wavelets, which makes up 84 features of feature vector. The
contrast, dissimilarity, homogeneity, Angular Second Moment, energy, and cor-
relation features (6 features in total) were extracted from the GLCM.
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Fig. 1. Training pipeline.
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2.3 Model evaluation

Two out of eight patient cases were chosen as validation dataset to evaluate the
performance of the model. The modules were evaluated separately using this
data. Finally, to check the qualitative performance of the model pipeline and
the combined performance of individual modules, 5 patient test cases were given
to the pipeline and evaluated. This was done as those 5 cases contained a mix of
different FLD stages. The qualitative visual inspection of the predictions mainly
concentrated on the accuracy and completeness of segmentation, segmentation
performance around the vessels and the classification performance. To evaluate
the whole model on the binary classification problem (fatty or non-fatty), a
prediction ratio (PR) was generated. PR is the ratio of patches which were
classified as fatty to the ones which were classified as non-fatty. This was used
as a quantitative measure to test the performance of the whole system.
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model model model model

Fig.2. Prediction pipeline.
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Table 1. Performance matrix of the segmentation model.

Precision Recall f1 Score Support
Background 0.81 0.78 0.80 81,200
Liver 0.79 0.82 0.80 81,200
Accuracy 0.81 162,400

Table 2. Performance matrix of the classification model.

Precision Recall f1 Score Support
Non-Fatty 0.70 0.72 0.71 36,000
Fatty 0.74 0.74 0.70 45,200
Accuracy 0.71 81,200

3 Results

The segmentation module was tested with 162,400 patches and was able to
achieve an accuracy of 0.81 (Table 1). Then the classification module was tested
with the patches extracted from the liver sections. The module was tested with
81,200 patches and was able to achieve an average accuracy of 0.71 (Table 2).
Equal number of patches were sampled from each of the classes while training
and testing. This was necessary since the background is greater in size when
compared to the liver sections.

The model was tested with a set of unseen samples for evaluating the quali-
tative performances. Fig 4 shows the predictions of a fatty sample when tested
on the pipeline. The model was able to produce well generalized and accurate
results. As seen in the figure, the ground truth contains only a portion of the
liver in the US image, but the model was able to segment and classify most of
the portions of the liver beyond the ground truth. Similar behavior is shown by
the model on all of the testing images. The model performances with different
thresholds for PR were evaluated. The model’s binary classification accuracy
was 0.84 with a PR of 0.60. The model predictions are helpful in locating the
fatty regions for further diagnosis.

Model Prediction

Input Image

0 200 400 600 800 1000 1200

Dground truth outline background non-fatty - fatty

Fig. 3. Model prediction for an input image with a fatty sample.
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Fig. 4. Segmentation around the vessels.

Model Prediction

Input Image

0 200 400 600 800 1000 1200

vessels I:]ground truth outline background non-fatty - fatty

4 Discussions

The fatty tissue classification worked well using a pipeline consisting of segmenta-
tion and classification modules. Our proposed multi stage classification solution
with the patch based approach was successful in the tissue texture recognition
for our datasets. As depicted in Figure 4, the model was capable of success-
fully processing images that include vessels and learned to segment liver texture
around vessels. Due to the adopted strategy in selection of ground truth, the
quantitative model evaluation doesn’t consider the regions which were predicted
outside the ground truth. To evaluating model performance on these regions,
a different set of ground truth with the segmentation masks covering the whole
liver portion has to be generated. Due to the adopted strategy in generating the
segmentation masks, model is not explicitly trained on minor variations in the
texture. Hence the chances of overfitting is minimized.

There are few drawbacks for the developed model. Both the segmentation
and classification modules were sensitive to the image scale. The used dataset
was a mix of different scaled images. But rescaling the images to a single size
resulted in loosing the details as our datasets were in JPEG format. Using
DICOM or TIFF files would give better results.
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