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Abstract. To quantify muscle properties in the thigh, the segmentation
of the fascia lata is crucial. For this purpose, the U-Net architecture was
implemented and compared for 2D images and patched 3D image stacks
in magnetic resonance images (MRI). The training data consisted of T1

MRI data sets from elderly men. To test the performance of the models,
they were applied on other data sets of different age groups and gender.
The U-Net approaches were superior to an unsupervised semiautomatic
method and reduced post-processing time.

1 Introduction

Quantification of adipose tissue (AT) in skeletal muscle is of growing interest to
understand mechanisms of muscle weakness during ageing and in diseases such
as sarcopenia and cachexia. The mid-thigh is the preferred anatomical location
for such measurements. It was recently shown that intermuscular adipose tis-
sue (IMAT), the combination of AT among muscles and the agglomeration of
larger adipocytes within muscles is a very sensitive parameter to monitor exer-
cise effects, the most widely used intervention to prevent muscle weakness with
increasing age [1]. The assessment of IMAT requires an accurate segmentation
of the fascia lata (FL), an envelope of fibrous tissue separating subcutaneous
adipose tissue from muscles and IMAT (Fig. 1). Several unsupervised semiau-
tomatic algorithms for FL segmentation of MRI images of the thigh have been
developed, however, due to poor contrast of the FL in MRI images, corrective
operator interactions are frequently required [2]. Segmentation of 3D MRI data
sets of the thigh consisting of 20 to 30 slices requires a large effort as studies
in the field typically consist of hundreds of patient visits. Therefore, the aim
of this study was to use a convolutional neural network to reduce the overall
segmentation and analysis time. The network should be applicable to popula-
tions of men and women of different ages. It was not the aim to fully automate
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Fig. 1. Typical T1 MR image of the thigh, 3D segmented
fascia lata visible as thin line of fibrous tissue around the
muscles (magenta), segmented IMAT within the fascia
(yellow).

the process, but to achieve a segmentation accuracy comparable to our current
gold standard [2], which includes a supervision of the semiautomatic process and
necessary manual corrections by a medical expert.

2 Methods

We used four different MRI datasets (D1-D4) from three different longitudinal
exercise intervention trials in subjects with and without sarcopenia. D1 was taken
from the FROST study [3] consisting of 43 elderly men (age ≥ 72 years, BMI
24.5±1.9 kg/m2), including two visits and 70 scans in total. From the FRANSO
study [4], 17 young men (age ≥ 25 years, BMI 23.4±1.9 kg/m2) were taken to
form D2 and 17 elderly men (age ≥ 72 years, BMI 27.3±2.2 kg/m2) to form
D3. D4 consisted of 16 elderly women (age ≥ 71 years, BMI 24.9±1.4 kg/m2),
from the FORMOSA study [5]. All datasets comprised a wide range of muscle
fat content.

2.1 Data acqusition

Whole MR image acquisition was performed using a 3T scanner (MAGNETOM
Skyrafit, Siemens Healthineers AG, Erlangen, Germany) and an 18-channel body
receive array coil. The images were aquired by a T1 weighted Turbo Spin Echo
sequence: TR: 844 ms, TE: 14 ms, voxel size: 0.5×0.5×3.0 mm3 (no slice gap),
matrix size: 512×512 in 28 slices, bias field was corrected by the N4ITK algorithm
[6].

2.2 Deep learning architecture and training

The FL segmentation was performed by the U-Net deep neural network. The
implementation followed the original publication [7], except for the padding per
convolution, which did not change the input dimensions. To overcome the class
imbalance between the thin FL contour around the muscles and the background,
the region bordered by the FL volume was segmented instead of the contour.
In order to analyze performance, we compared an implementation in 2D with
a patched 3D U-Net. The 2D model received the full image resolution while
for the 3D approach the images were downsampled to 256×256 pixels, without
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downsampling in through plane direction. The input consisted of patches of 4
slices each, both approaches were trained only on D1. Dropout regularization
was applied at the end of every convolutional block. The training also included
data augmentation, adding random spatial transformations (like shear, rotation,
shifts and flips) to data samples. Subsequently, the model was tested on D2, D3
and D4.

The networks were trained to optimize a loss function defined as a linear
combination of the dice loss (DL) and the weighted cross entropy (WCE)

Loss(y, p) = αWCE + (1− α)DL (1)

With DL defined as 1−DSC and DSC being the dice similarity coefficient

DSC(y, p) =
2
∑
i yipi + s∑

i yi +
∑
i pi + s

(2)

With y being the true image and p the predicted segmentation map. The term
s denotes a smoothing factor which was set to 0.0001. Analogously, WCE is
defined as

WCE(y, p) = −(β · ylog(p) + (1− y)log(1− p)) (3)

with β empirically determined to be 0.4 in order to penalize false positive
predictions. The total number of 2D samples was 1960 individual slices (28 slices
per 3D volume), which were shuffled, normalized and split into training (70 %),
validation (15 %) and test (15 %) sets. The models were implemented using ten-
sorflow and trained on a Nvidia Geforce GTX 1060 6GB GPU, using the Adam
optimizer. Due to GPU memory limitations, the batch size for the 2D model was
restricted to 2. For the 3D model, the data set was split at patient level into 57
for training, 7 for validation and 6 patients for testing. For the 3D model the
patch size was restricted to 4 slices with a batchsize of 1. The optimum values
for α=0.2 and the learning rate of 2e-4 were found by a grid search in combi-
nation with a ten-fold cross validation. Training the 2D model took 2 hours for
12 epochs. The last 6 epochs were trained at a learning rate of 2e-5 to refine
the results, initial weights came from pretraining the model on the segmentation
of the cross sectional thigh area. Additional parameters were: dropout rate 0.5,
augmentation: horizontal flip and nearest neighbor interpolation, with rotation
range 20, width shift range 0.2 and height shift range 0.2.

2.3 Evaluation of the results

For the comparison of the segmentation results between the U-Net and the gold
standard, the DSC and the Hausdorff distance (HD) of images were used. HD
computes the maximum distance between the sets of non-zero pixels A and B

HD(A,B) = max(h(A,B), h(B,A)) (4)

with h being the directed distance

h(A,B) = max
aεA

min
bεB
‖a− b‖ (5)
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Table 1. Accuracy of the 2D U-Net and unsupervised method against gold standard.

Group D1 D2 D3 D4

DSC unsup. 0.975±0.075 0.984±0.024 0.993±0.002 0.971±0.018

DSC U-Net 2D 0.996±0.002 0.991±0.008 0.995±0.002 0.985±0.008

HD [pixel] unsup. 15.02±16.76 14.18±14.38 7.344±4.557 23.49±14.83

HD [pixel] U-Net 2D 3.417±1.564 8.575±7.092 5.289±2.418 11.67±5.707

Number of samples 196 442 442 416

DSC was used in order to leave out the background, as this takes up approxi-
mately 80 % of the image. Additionally the HD was computed to quantify the
offset between the boundaries of the prediction and the gold standard mask,
because DSC is not sensitive enough against small differences at the borders of
the masks. Before calculating the test accuracies, the prediction was thresholded,
counting every pixel <0.1 as background.

3 Results

3.1 2D U-Net model

Final training accuracy for DSC was 0.9950, with a validation accuracy of 0.9955
(before thresholding). Tab. 1 shows the results of the 2D U-Net and the results of
the unsupervised segmentation technique before the manual correction process.
Fig. 2 shows the 2D U-Net results (after thresholding) and difference images in
relation to the gold standard.

As expected, DSC of the 2D U-Net was highest in D1, the dataset used for
training. In comparison to D1, DSC was similar for D2 and D3, with D3 being
higher than D2. Lowest DSC was found for D4, the cohort of elderly women,
which compared to D1 and D2 show a larger amount of IMAT and subcutaneous
adipose tissue (SAT). Images of D4 also show more connective tissue, visible
in the SAT. The young men of D3 with the least amount of AT, showed the
best results. A similar trend was observed for the unsupervised segmentation
technique. Numerically, the 2D U-Net results for DSC and HD were always
superior.

3.2 3D U-Net model

3D U-Net results are shown in Tab. 2. Accuracy is measured in the upsampled
prediction masks, after applying a median filter to smoothen the edges. Results
for the 3D model were similar to 2D results, but details around the fascia contour
were less accurate in 3D, which can be seen in the HD values. In rare cases, in
particular for very high levels of fat infiltration, the 2D U-Net model performed
poorly and created holes or segmented too much of the SAT (Fig. 3 bottom row,
left and right).
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Table 2. Accuracy of the 3D U-Net against gold standard.

Group D1 D2 D3 D4

DSC (upsampled) 0.994±0.002 0.992±0.002 0.994±0.004 0.982±0.001

HD [pixel] (upsampled) 4.224±1.719 6.459±3.813 5.179±3.514 21.698±48.458

Number of patients 7 17 17 16

3.3 Post-processing time

Compared to the unsupervised segmentation, manual post-processing times were
significantly reduced by the 2D U-Net model (Tab. 3.)

(a) D1 (b) D2 (c) D3 (d) D4

Fig. 2. Top row: MR image with overlay of the prediction mask (magenta). Bottom
row: gold standard mask (red), prediction mask (cyan) and intersection of both masks
(gray).

(a) D2 (b) D3 (c) D4

Fig. 3. Comparison of the 3D segmentation (upper row) with the 2D segmentation
(bottom row) for the same patients in D2, D3 and D4.
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Table 3. Manual post-processing time.

Group D2 D3 D4

Unsupervised [min] 4.3±1.7 2.4±1.1 6.8±2.9

2D U-Net [min] 1.8±0.9 1.0±0.4 4.6±2.5

4 Discussion and Conclusion

Two different U-Net models for the segmentation of the FL were implemented.
Although the models were only trained on images of elderly men, both ap-
proaches also delivered excellent results for young men. The models were able
to predict the FL segmentation with higher accuracy than the unsupervised
method, which halved the time for final manual corrections. The patched 3D
approach overall showed sligthly lower accuracy in the test datasets but pro-
duced smoother, less convex segmentations. Results for D4 indicated that higher
subcutaneous and intramuscular AT content caused poorer segmentation. Data
from both genders and 3D information should be included in the training data
to gain best results.
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