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Abstract. The variety of recently proposed deep learning models for de-
formable pairwise image registration leads to the question how beneficial
certain architectural design considerations are for the registration perfor-
mance. This paper aims to take a closer look at the impact of some basic
network design choices, i.e. the number of feature channels, the number
of convolutions per resolution level and the differences between partially
independent processing streams for fixed and moving images and direct
concatenation of input scans. Starting from a simple single-stream U-Net
architecture, we investigate extensions and modifications and propose a
model for 3D abdominal CT registration evaluated on data from the
Learn2Reg challenge that outperforms the baseline network VoxelMorph
used for comparison.

1 Introduction

Deformable image registration aims to align pairs of images or image volumes
by predicting non-linear transformations that optimises an appearance or shape-
based metric. Registration of medical images helps to analyse large image datasets
for research purposes and plays an important role in clinical practice, including
diagnostic tasks, image-guided interventions, and motion tracking [1]. Recent
deep learning-based image registration methods [2,3,4,5,6] show the potential to
outperform conventional methods in terms of improved registration speed and
accuracy. However, the estimation of large deformations is still considered chal-
lenging. Meanwhile there is a large variety of publications presenting different
deep learning networks for image registration offering multiple suggestions for
the design of architectures consisting of different architectural modules.

We take up the idea of several registration networks which include an U-Net
architecture to learn deformations [2,4]. The idea of not directly concatenating
fixed and moving image before feature extraction is examined as well and has
been used in [7] where fixed and moving images are analyzed in separate pipelines
for affine registration or in the dual-stream registration network proposed in [8].

This paper aims to take a closer look at the impact of different architectural
design ideas on the registration performance in order to finally propose an archi-
tecture for abdominal CT registration that combines the most convincing of the
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considerations examined. We compare our results to the simple baseline network
for unsupervised pairwise image registration VoxelMorph [2].

2 Materials and Methods

We examine four different architectural designs for pairwise image registration,
starting from a simple single-stream U-Net architecture, which is then extended
and further modified. All considered architectures are visualised in Fig. 1.

Our investigations start with a registration model that is from its basic struc-
ture similar to VoxelMorph [2], but with one difference that it contains fewer skip
connections. The model concatenates fixed and moving images at the beginning
and uses sequences of convolution followed by instance normalisation and leaky
ReLU. The resolution of the spatial dimensions is first successively decreased
by strided convolutions to 1

24 of the input image dimensions and then increased
again by upconvolutions. The central part of the architecture consists of an
U-Net like part using two skip connections [9]. Conversely to the reduction in
resolution, the number of feature channels from the convolution layers is firstly
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Fig. 1. Overview of the different considered architectures with given number of feature
channels being output from the convolutions (rounded rectangles) and concatenations
(circles). The initial architecture (a) is modified so that first the number of feature
channels (b) and then the number of convolutions (c) is increased. The last modification
(d) results in a two-stream architecture that starts with separate encoder blocks for
fixed and moving image. Modifications to the previous architecture are marked in red
respectively. The corresponding output resolutions are indicated in blue within the
visualisation of model (a) and apply to all of the models.
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increased up to 64 and then decreased (see Fig. 1 (a)) until the output yields
3 feature channels that correspond to the 3 displacement dimensions. As the
displacements are considered to be within the the range of [−1, 1], the last con-
volution layer is followed by a tanh activation function and the obtained output
is used for warping with the moving input image.

The first modification we make to this initial architecture is to double the
number of feature channels (quadrupling the parameters) of all convolution layers
of the network (see Fig. 1 (b)). We then extend the number of Convolution-
InstanceNorm-ReLU sequences per resolution level to three (Fig. 1 (c)). Finally,
we propose a two-stream architecture with separate encoder blocks for fixed and
moving image and their concatenated output as input for the U-Net part of the
architecture (Fig. 1 (d)). Different from [8], which introduces a continuous dual-
stream architecture, we concatenate the two streams within the encoder part
of the network at a spatial resolution of 1

6 of the input dimensions. As we use
monomodal data for our experiments, the weights are shared between the two
encoders of this two-stream architecture. In Fig. 2, our final image registration
approach is illustrated.

We train our models using a loss function which ensures similarity of fixed
and warped moving image and smooth deformation fields. Modality indepen-
dent neighbourhood descriptors (MIND) with self-similar context (SSC) [10] are
extracted from fixed and warped moving image and the mean squared error
between them is calculated. Additionally, we apply diffusion regularisation to
achieve smooth and plausible deformation fields. For our proposed two-stream

Fig. 2. Our model for pairwise image registration with label supervision: Fixed and
moving images are given into separate encoder blocks for the extraction of features
that are then concatenated and passed to an U-Net and following decoder block for
the estimation of displacements. The obtained displacement fields are used to warp the
moving image. The loss function is designed so that the warped moving image and labels
resemble the fixed image and labels (similarity of MIND features and label supervision)
and furthermore the deformation fields are smooth (diffusion regularisation).
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architecture, we furthermore investigate the benefits of label supervision by fur-
ther extending the loss function by computing the mean squared error between
fixed an warped moving one-hot encoded label maps (background excluded)
weighted inversely proportional to the square root of the class frequency.

For our experiments we use the Learn2Reg challenge [11] dataset containing
30 abdominal CT scans with thirteen manually labeled abdominal organs, in-
cluding spleen , right kidney , left kidney , gall bladder , esophagus , liver

, stomach , aorta , inferior vena cava , portal and splenic vein , pancreas
, left adrenal gland , and right adrenal gland [12]. The data has been lin-

early pre-registered and we re-sample the data to dimensions of 144× 112× 192
to reduce computational complexity. The dataset is split into 20 training cases
and 10 test cases. For evaluation we consider all possible pairwise combinations
of the test cases (leading to 45 unique pairs). We train our networks using Adam
and a learning rate of 0.001 (0.0001 for the baseline network of VoxelMorph)
for 50, 000 iterations. Diffusion regularisation is weighted in such a way that the
standard deviation of the Jacobian determinant stays below 1.0 on the training
set and for label supervision we chose a weighting of λls = 2.

3 Results

In Tab. 1, we report the average Dice overlap and properties of the Jacobian
determinant as well as the inference time on GPU and the number of trainable
parameters. Comparing the registration performance, the first model examined
(1-stream (a), unsupervised) was only able to achieve a gain in Dice overlap
of 2.5 % points (compared to the initially overlap of 25.15 %) and yields a
worse performing network compared to the VoxelMorph with its higher num-
ber of skip connections and lower number of parameters. The model with an
increased number of feature channels (1-stream (b), unsupervised) led to an
improvement of about 2 % points compared to the first model. Increasing the
number of convolution-normalisation-activation blocks per resolution level from
one to three (1-stream (c), unsupervised) increased the Dice overlap by another
2 % points leading to a score similar to VoxelMorph, whereas the deformation
field estimated by VoxelMorph is less smooth. With our unsupervised 2-stream
model (d), we were able to achieve an average Dice overlap of 35.39 %, outper-
forming VoxelMorph by nearly 4% points. When training with label supervision,
this score could be further improved to 43.85 %, which is competitive to many
other approaches (cf. learn2reg.grand-challenge.org).

Tab. 2 shows Dice scores for the different considered label classes pointing
out that the registration methods showed the best improvement of Dice over-
lap for comparably large and medium-sized organs. For these organs, also label
supervision during training showed the highest improvement of registration per-
formance compared to unsupervised training. These findings are also exemplary
visually confirmed by Fig. 3.
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Table 1. Evaluation results using Dice scores and Jacobian determinant, average in-
ference time on GPU (Quadro P6000), and number of parameters. Dice scores are
averaged over all thirteen label classes (background excluded). Initial refers to average
values before registration. The quality of the deformation field is evaluated through the
Jacobian determinant. Small standard deviations indicate smooth deformation fields
and values below 0 indicate singularities, i.e. foldings.

avg std det(J) inf. time/ param.

Dice [%] det(J) < 0 [%] pair [ms] count

initial 25.14 ± 12.85 - - - -

VoxelMorph unsuperv. 31.70 ± 13.75 0.5853 3.61 117.58 396451

1-stream (a), unsuperv. 27.85 ± 12.56 0.4096 0.89 44.09 746467

1-stream (b), unsuperv. 29.78 ± 12.60 0.4600 1.10 50.17 2985251

1-stream (c), unsuperv. 31.72 ± 13.01 0.4184 0.96 75.09 6814499

2-stream (d), unsuperv. 35.39 ± 14.05 0.4681 1.38 102.32 7449123

2-stream (d), superv. 43.85 ± 11.33 0.5012 1.37 102.32 7449123

Table 2. Dice overlap in % for the 13 different label classes (see text for colour coding).

initial 42 34 35 2 23 62 24 33 36 5 15 8 9

VM unsuperv. 53 45 45 3 28 72 29 47 44 7 17 12 10

1-stream (c), unsuperv. 54 41 44 4 29 73 31 44 45 8 16 13 10

2-stream (d), unsuperv. 60 49 50 4 28 78 35 50 46 11 19 17 12

2-stream (d), superv. 73 69 71 7 37 83 47 59 52 12 26 20 15

fixed moving warped VM warped (c) warped (d)u. warped (d)s.

Fig. 3. Result visualization (coronal/axial) of different architectures (VoxelMorph (VM),
1-stream (c), unsupervised 2-stream (d)u., supervised 2-stream (d)s.) for one test pair:
fixed and moving image and warped moving images output from the different models.

4 Discussion

We investigated several architectures for deep-learning based deformable im-
age registration. Besides the expected observations that increased numbers of
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feature channels and convolution-normalisation-activation sequences led to im-
proved registration results, we found out that concatenating the features ex-
tracted by separate encoder blocks for moving and fixed image achieved better
results than directly concatenating the input images. With this two-stream archi-
tecture, we were able to outperform the simple baseline network for unsupervised
pairwise image registration VoxelMorph. Due to the fact that we performed our
experiments on a labeled dataset, we could further show that - starting from
the initial untrained case - including label supervision when training our model
led to a further substantial increase of Dice overlap of 8 % points compared to
unsupervised training.
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