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Abstract. Filtered back-projection (FBP) has been widely applied for
computed tomography (CT) image reconstruction as a fundamental al-
gorithm. Most of the filter kernels used in FBP are designed by analytic
methods. Recently, the precision learning-based ramp filter (PL-Ramp)
has been proposed to formulate FBP to directly learn the reconstruction
filter. However, it is difficult to introduce regularization terms in this
method, which essentially provides a massive solution space. Therefore,
in this paper, we propose a neural network based on residual learning for
filter kernel design in FBP, named resFBP. With such a neural network,
it is possible for us to limit the solution space by introducing various reg-
ularization terms or methods to achieve better reconstruction quality on
the test set. The experiment results demonstrate that both quality and
reconstruction error of the proposed method has great superiority over
FBP and also outperforms PL-Ramp when projection data are polluted
by Poisson noise or Gaussian noise.

1 Introduction

Computed tomography (CT) is a technology to obtain internal information of an
unknown object and has been extensively used in many areas, such as medical
imaging and electron microscopy in materials science. Filtered back-projection
(FBP), one of the most popular methods for CT image reconstruction, requires
a large number of noise-free projections to yield accurate reconstructions. It is
applied widely for its low computational cost and ease of implementation. How-
ever, in practice, noisy projections and projection discretization can make the
image reconstructed by FBP suffer from severe artifacts. To suppress artifacts,
the filter kernel designs for specific cases have been proposed to improve the
quality of reconstruction images.

The methods for filter kernel design can be divided into two categories: 1)
analytic design, 2) data-driven learning. For analytic design, Ram-Lak filter [1]
is mathematically optimized from the ramp filter for the discrete image and
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projection. Shepp-Logan filter [2], imposing a different noise assumption, is one
common filter for FBP. To derive new filters, Wei et al. [3] propose a filter design
methodology in the real space, and apply this methodology to deduce new filters
as well as classic filters. New filters have been demonstrated to produce equivalent
image quality in comparison to classic filters.

For data-driven methods, a novel scheme is proposed by Shi et al. [4] to de-
sign the reconstruction filters to replace the ramp filter. The reconstruction filters
are optimized to drive the reconstruction matrix approach δ-matrix as close as
possible with constraints. Wang et al. [5] propose an end-to-end network FBP-
Net, combining the FBP algorithm with a denoiser neural network, to directly
reconstruct positron emission tomography (PET) images from sinograms. The
frequency filter is adaptively learned in the FBP part. Syben et al. [6] propose
the precision learning-based ramp filter (denoted as PL-Ramp) to optimize dis-
crete filter kernels by back-propagation, which solves the problem of manually
designing filters. Experiments have proved that the initialized ramp filter can
automatically approximate the hand-crafted Ram-Lak filter by training, and it
greatly reduces the burden of manual design and allows the filter to be trained
to adapt to more noise conditions.

Although PL-Ramp has been proved to have the ability to learn a discrete op-
timal reconstruction filter from the ramp filter, its performance on training noisy
data is not as good as expected according to our experiments. Moreover, PL-
Ramp does not have any regularization term to avoid over-fitting. To solve the
problems mentioned above, in this paper, we propose a residual neural network
to learn the filter in FBP, named resFBP. In detail, resFBP includes a resid-
ual fully connected neural network and a residual convolution neural network.
Experiments on Poisson noise and Gaussian noise data demonstrate that our
proposed method can better suppress the artifacts and has lower reconstruction
root-mean-squared error (RMSE) than PL-Ramp.

2 Materials and methods

2.1 resFBP

The architecture of the proposed resFBP is illustrated in Fig. 1. The whole pro-
cedure can be described as following: the projection data first undergo Fourier
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Fig. 1. The general architecture of resFBP.
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transform F , and then are filtered in the frequency domain with the learned
filter Klearned before undergoing inverse Fourier transform FH . Next, the result
is refined through the resBlock, and finally is back-projected to get the recon-
structed image with rectified linear unit (ReLU) activation. In Fig. 1, the light
blue circle and the dark blue circle represent data in the projection domain and
in the image domain, respectively.

Mathematically, the objective function of resFBP can be described as the
following function:

f(θ1, θ2) =
1

2

∥∥∥A⊤K2(θ2)F
HK1(θ1)Fp− x

∥∥∥2
2
+R(θ1), (1)

in which p denotes the projection data; x denotes the image to be reconstructed;
F and FH denote Fourier transform and inverse Fourier transform respectively;
θ1 denotes the weights and biases of all layers in the kernel-learning module; θ2
denotes the kernel values of convolution layers and scale variables of batch nor-
malization in the resBlock module; K1(θ1) and K2(θ2) denote effects of kernel-
learning module and resBlock module on projection data; f(θ1, θ2) denotes the
loss function; AT denotes the transpose of the projection operator A; R(θ1) de-
notes the l2-norm regularization term of weights in the kernel-learning module.
In the training stage, θ1 and θ2 are simultaneously updated by the corresponding
gradients of the objective function.

The biggest difference from the existing work[6] lies in two modules, the
kernel-learning module and the resBlock module, which are described in detail in
the following. Fig. 2 (a) illustrates the kernel-learning module, in which Klearned

is the summation of the Ramp filter kernel K and its residual part that goes
through a two-layer fully connected neural network. The first layer has only
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(a) Kernel-learning module

R
el

u

2D
C

o
n

v
o

lu
ti

o
n

1 
 3
!

3

B
a

tc
h

 N
o

r
m

a
li

z
a

ti
o

n

R
el

u

R
el

u

!

"!

Filtered sinogram Denoised sinogram

2D
C

o
n

v
o

lu
ti

o
n

32
  3
!

3

2D
C

o
n

v
o

lu
ti

o
n

1 
 3
!

3

B
a

tc
h

 N
o

r
m

a
li

z
a

ti
o

n

(b) resBlock module

Fig. 2. Two modules designed for filter kernel learning.
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10 neurons and the second layer has 400 neurons, which equals the number of
detector pixels. The width (from 10 neurons to 400 neurons) and depth (from
1 layer to 3 layers) of the fully connected network are optimized by minimizing
reconstruction error on the validation set. This configuration achieves state-of-
the-art performance while requiring the least training parameters. This residual
module brings two advantages. On the one hand, it can be adapted to noise
projection data while maintaining a similar performance as the Ramp filter in
noise-free cases. On the other hand, it is possible to introduce a regularization
term, such as a l2-norm on weights, in training to avoid over-fitting.

The resBlock module is shown in Fig. 2 (b), where a typical ResNetV2 [7]
structure is used. This structure has been proved to make information propaga-
tion smooth. The resBlock can further denoise the data in the projection domain,
improving the quality of the reconstructed image. With batch normalization, it
need not add any regularization term. The number (ranging from 1 to 3) of
ResNetV2 and the number (ranging from 8 to 64) of convolution kernels of the
resBlock module are optimized by grid search on the validation set.

2.2 Experimental setup

In this paper, the resFBP is implemented with PY-RONN [8], which is an open-
source platform for applying deep learning to medical image reconstruction. Ex-
periments are conducted on medical images, provided by American Association
Physicists Medicine (AAPM, [9]). In the dataset, AAPM provides 5936 CT slice
images from 10 patients for 4 kinds of scanning settings. The training set, valida-
tion set and test set contain 4795, 823, and 318 CT slice images respectively. In
this paper, we use the CT slice images reconstructed by the full dose projection
and 1.0 mm image pixel and reshape them to 256×256. The projection data are
simulated from the AAPM volumes by parallel-beam scanning, which has 400
1.0 mm detector pixels collecting projection data from 180 uniformly distributed
positions at a range of 180◦.

The value of the pixel in the original image is a positive integer, which repre-
sents the attenuation rate in the Hounsfield unit (HU) with an offset of 1000 HU.
In this paper, the value is normalized to [0,1] for training. To simulate noise in
the process of reconstruction, Gaussian noise and Poisson noise are added to the
projection data. The mean and variance of Gaussian noise are 0 and 0.5, while
Poisson noise is simulated by assuming each detector pixel is exposed to 105 pho-
tons before attenuation. The RMSE between ground truths and reconstructed
CT images is employed as the evaluation metric.

The parameters of the fully connected neural network in the kernel-learning
module and convolution layer in the resBlock module are initialized with trun-
cated normal distribution with small-variance and zero-mean. The loss function
consists of a data fidelity term and a regularization term of weights in the kernel-
learning module. The training batch size is 50 and the model is trained for 1000
epochs with the Adam optimizer using a 0.01 learning rate.

To validate the advantages of resFBP, we train PL-Ramp and resFBP using
two kinds of training datasets, which are polluted by Poisson noise or Gaussian
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Table 1. The reconstruction RMSE (HU) comparison of PL-Ramp and resFBP in Pois-
son noise and Gaussian noise under two kinds of training data.

Training dataset
Test on Poisson noise Test on Gaussian noise

FBP PL-Ramp resFBP FBP PL-Ramp resFBP

None 133.9±1153.2 - - 90.3±0.689 - -

Poisson noise - 90.7±12.7 80.0±8.8 - 88.6±20.9 77.4±14.6

Gaussian noise - 96.1±16.5 84.2±15.6 - 94.5±23.6 83.1±21.6

noise. Then, we compare the reconstruction RMSE of FBP and the trained
models with projection data polluted by Poisson noise and Gaussian noise.

3 Results

Table 1 displays the reconstruction RMSE (mean±std) (HU) of FBP, RL-Ramp
and resFBP under Poisson noise and Gaussian noise training dataset. It can
be observed that regardless of the training dataset used, resFBP achieves lower
RMSE mean and RMSE standard deviation than PL-Ramp and has great supe-
riority over FBP under the same condition. For those two filter learning meth-
ods, the models trained with Poisson noise have better performance than those
trained with Gaussian noise when tested on Gaussian noise data.

(b) 124.9 HU

(f) 89.7 HU

FBP

(c) 85.8 HU

(g) 84.1 HU

PL-Ramp

(d) 72.6 HU

(h) 71.8 HU

resFBP

Poisson 
noise

Gaussian 
noise

(a)

(e)

Ground truth

Fig. 3. Reconstruction results of two sample slices from the test patient, in the window
of [-300,300] HU. The RMSE value of each reconstruction result is displayed. (a)(e) are
ground truths. (b)(c)(d) are tested with Poisson noise data, and (f)(g)(h) are tested
with Gaussian noise data. (a), (b), (e) and (f) use FBP with Ram-Lak filter. (c) and
(g) use PL-Ramp. (d) and (h) use resFBP.
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The reconstruction results of two sample slices from the test patient are
visualized in the window of [-300,300] HU in Fig. 3. The images are reconstructed
from Poisson noise data (the first row) and Gaussian noise data (the second row).
Ground truths from original CT slice images are shown in Fig. 3(a) and (e)
for reference. Fig. 3(b) and (f) show the results of FBP, which produced severe
artifacts due to the high-pass filter designed in FBP. Fig. 3(c) and (g) show the
results of PL-ramp, while Fig. 3(d) and (h) show the results of resFBP. The
images reconstructed by PL-Ramp are much better than that by FBP due to
its capability of learning from data, however, resFBP reconstructs images with
sharper boundaries and lower reconstruction error. Therefore, resFBP is less
sensitive to noise.

4 Discussion

With the help of the residual neural network, resFBP can achieve lower recon-
struction error with sharper boundaries compared to PL-Ramp on Poisson noise
data and Gaussian noise data. Due to regularization terms, resFBP is more ro-
bust than PL-Ramp and less likely to suffer from over-fitting. In consideration
of the complexity of designing, this method is better than the analytical filter
kernel design method. Meanwhile, it can still provide a good filter by learning
in a noisy situation, where it is difficult to design analytic filters. In addition,
the reconstruction by resFBP can serve as a better prior for deep learning-based
post-processing methods. Robustness against noise on real datasets and the con-
tribution of different modules remain to be further studied.
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