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Abstract. Barrett’s esophagus denotes a disorder in the digestive sys-
tem that affects the esophagus’ mucosal cells, causing reflux, and show-
ing potential convergence to esophageal adenocarcinoma if not treated in
initial stages. Thus, fast and reliable computer-aided diagnosis becomes
considerably welcome. Nevertheless, such approaches usually suffer from
imbalanced datasets, which can be addressed through Generative Adver-
sarial Networks (GANs). Such techniques generate realistic images based
on observed samples, even though at the cost of a proper selection of its
hyperparameters. Many works employed a class of nature-inspired algo-
rithms called metaheuristics to tackle the problem considering distinct
deep learning approaches. Therefore, this paper’s main contribution is to
introduce metaheuristic techniques to fine-tune GANs in the context of
Barrett’s esophagus identification, as well as to investigate the feasibil-
ity of generating high-quality synthetic images for early-cancer assisted
identification.

1 Introduction

Barrett’s esophagus (BE) is a dangerous condition in which the mucosal cells of
the lower part of the esophagus changes due to chronic gastrointestinal reflux,
and may progress into esophageal adenocarcinoma [1]. Computer-aided analysis
of Barrett’s esophagus and adenocarcinoma has been subjected to intensive re-
search in the past years using both handcrafted features from endoscopic images,
as well as the application of Convolutional Neural Networks (CNN) for automatic
identification. Some examples can be observed in recent works of Souza Jr. et
al. [1], van der Sommen [2] and Passos et al. [3].
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A usual drawback, the limited amount of data, restricts the development and
validation of more effective methods to detect early-stage illness in medical appli-
cations. Recently, such a bottleneck has been coped through data augmentation
(DA) techniques. In this context, Generative Adversarial Networks (GAN) [4]
have presented significant improvements in image generation, with highlights for
medical imaging [5,6]. GAN’s primary idea is to train a generator and a discrim-
inator simultaneously, aiming to generate convincing and high-quality synthetic
images.

One of the main hindrances regarding GANs and most modern deep learning
approaches concerns a proper selection of their hyperparameters since they pose a
significant influence in the model’s final output. Several works addressed a sim-
ilar problem through metaheuristic optimization techniques [3]. Metaheuristic
approaches refer to stochastic nature-inspired methods that mimic some natural
behavior observed in groups of animals, social conduct, among others, to solve
complex problems. The paradigm obtained notorious popularity due to positive
results in a wide variety of applications.

As far as we know, there is no work addressing the use of metaheuristic
techniques to optimize the GAN hyperparameters itself. Therefore, the main
contributions of this work are three-fold: (i) to introduce metaheuristic opti-
mization algorithms in the context of GAN hyperparameter optimization; (ii)
to investigate the feasibility of using GAN parameter optimization to generate
high-quality synthetic images for further assisting the identification of Barrett’s
esophagus and adenocarcinoma; and (iii) to evaluate whether it makes sense
to perform such parameter optimization of image generation for further data
augmentation and classification purposes.

2 Materials and Methods

The GAN training procedure demands the user an appropriate selection of the
network hyperparameters, which poses a far from straightforward task due to the
context-dependence and the sensitivity related to the selected values. To cope
with such an issue, this work proposes employing nature-inspired metaheuristic
optimization techniques to fine-tune a set of five main hyperparameters θ =
{η, β1,ngf,ndf, batch size} considering a pre-defined range, described as follows:
the learning rate η ∈ [0.0001, 0.001], the Adam optimizer decay control β1 ∈
[0.002, 0.5], the ngf ∈ [1, 128] and the ndf ∈ [1, 128], which are related to the
generator and discriminator feature map depths, respectively, and the batch size∈
[1, 128].

The main idea behind metaheuristic optimization techniques consists of
stochastically initializing a set of random solutions, and iteratively evolving
towards the solution whose decision variables best fit a target objective, i.e.,
minimizing the quadratic difference between generator and discriminator losses.
The pipeline employed to perform GAN hyperparameter fine-tuning is depicted
in Fig. 1. In a nutshell, the optimization technique selects the set of hyperpa-
rameters that minimize the loss function over the training set considering an
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Fig. 1. Proposed approach to encode the decision variables of each optimization agent.

augmented dataset composed of endoscopy images and synthetic images gener-
ated during the process.

The following metaheuristic techniques from [3] are considered:

– BSA: Backtracking Search Optimization is an evolutionary algorithm that
combines stored memories with crossover and mutation operations to gener-
ate new individuals.

– BSO: Brain Storm Optimization is a swarm-based optimization technique
inspired by the creative human brainstorming process.

– FA: Firefly Algorithm tries to mimic the fireflies’ behavior while searching
for mating partners and preys.

– FPA: Flower Pollination Algorithm is a swarm-based optimization method
that mimics the pollination process of flowering plants.

– JADE [3]: a differential evolution-based algorithm that implements the
“DE/current-to-p-best” mutation strategy.

3 Results

This section briefly describes the datasets used in this work and the setup em-
ployed during the experiments.

3.1 Datasets

Two white-light endoscopic datasets were used for an in-depth analysis con-
cerning the robustness of the proposed approach. The first one, provided at the
“MICCAI 2015 EndoVis Challenge (MICCAI), comprises 100 lower esophagus
endoscopic images captured from 39 individuals, 22 of them being diagnosed with
Barrett’s esophagus (BE), and 17 showing early-stage signs of esophageal adeno-
carcinoma (AD). Five different experts have individually delineated suspicious
regions observed in the cancerous images.

The second dataset used for the experiments was provided by the Augsburg
Hospital University and it is composed of 76 endoscopic images captured from
different patients with BE (42 samples) and early AD (34 samples). The cancer-
ous images were manually annotated by one expert. The annotations provided
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(a) MICCAI (b) Augsburg

Fig. 2. MICCAI (a) and Augsburg (b) positive samples to AD and their respective
delineations.

by the experts were considered for the patch label definition for both datasets.
Fig. 2 (a) and (b) depicts some positive samples of the MICCAI and the Augs-
burg datasets.

3.2 Experimental Setup

Regarding the pre-processing step, the images were split into patches [1]. The
idea is to cover the entire image with a sliding window of 200 × 200 pixels and
overlapping of 50 pixels in horizontal and vertical directions. The label of each
patch was based on the expert annotations of the full-images.

To obtain the best parameters for each dataset and class, the metaheuristic
techniques were run for 40 epochs. For the data augmentation evaluation, ex-
periments were conducted over 12, 000 epochs, generating 525 synthetic samples
at every 2, 000 iterations, for each sample class (AD and BE) using the best
parameters obtained in the metaheuristic experimental design. The output sam-
ple amount was related to computational limitations. We employed two different
strategies to sample the synthetic images: (i) the last batch during learning, and
(ii) the five last batches. The statical analysis was conducted using the Wilcoxon
signed-rank test with confidence level of 5% [7].

After performing data augmentation, 80% of the new dataset was randomly
selected for training purposes, and the remaining 20% was used for the testing.
Such a partitioning was conducted over 20 runs for more robust evaluation. For
the classification step, we employed two CNN architectures pre-trained with the
ImageNet dataset: LeNet-5 and AlexNet, also running for 12, 000 epochs.

3.3 Optimization Results

The metaheuristic results for the hyperparameters fine-tuning can be observed
in Table 1. The best results for MICCAI dataset (closest to 0) were obtained
using BSA and FA, for AD and BE diagnosed patches, respectively, with values
of 0.0033 and 0.0010. Regarding the Augsburg metaheuristic fine-tuning, best
results were achieved, respectively, for AD and BE, using FA and BSA, with
values of 0.0025 and 0.0011. Fine-tuned synthetic samples can be observed in
Figure 3.
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Table 1. Mean loss value and time consumption considering MICCAI and Augsburg
datasets.

Dataset Diagnosis Metric BSA BSO FA FPA JADE RANDOM

MICCAI

AD
Loss 0.0033 0.0056 0.0046 0.0037 0.0057 0.0310

Time(h) 2.9238 2.7872 3.7210 3.7254 3.4264 1.0706

BE
Loss 0.0045 0.0029 0.0010 0.0011 0.0018 0.0034

Time(h) 13.6447 15.1997 16.1333 14.6826 10.8849 4.8940

Augsburg

AD
Loss 0.0049 0.0074 0.0025 0.0140 0.0053 0.0129

Time(h) 2.8345 2.5835 2.1745 4.0850 2.4363 0.6976

BE
Loss 0.0011 0.0045 0.0036 0.0057 0.0105 0.0051

Time(h) 8.6632 8.7128 8.7699 9.9796 9.3854 2.6029

3.4 Classification Results

Regarding the classification performed after the data augmentation step, one can
observe the results in Table 2. Concerning MICCAI dataset, the best classifica-
tion rates were obtained using BSA and FA data augmentation for AD and BE
patches, respectively, with a value of 0.93 using LeNet-5 architecture and“5-last”
augmentation protocol. For the Augsburg dataset classification, the best results
were achieved, respectively, for AD and BE, using FA and BSA parameters, with
an accuracy of 0.90 also using LeNet-5 and “5-last” augmentation protocol. The
Wilcoxon test revealed statistical simmilarity for MICCAI classification results
for both LeNet-5 and AlexNet architectures. The augmented dataset results us-
ing fine-tuned GAN outperformed the other experimental delineations.

4 Discussion

This paper dealt with computer-assisted Barrett’s esophagus and adenocarci-
noma identification through GAN-fine-tuned data augmentation and CNNs as
feature extractors. The GAN hyperparameter fine-tuning showed promising clas-
sification results after the data augmentation step, outperforming the classifi-
cation rates of original and standard augmented datasets. Regarding the fine-

(a) MICCAI (b) Augsburg

Fig. 3. MICCAI (a) and Augsburg (b) dataset experiments using patches: original
(top) and synthetic (bottom) images.
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Table 2. Accuracy results considering MICCAI and Augsburg datasets taking different
kinds of augmentation into account.

Standard last 5-last

No aug. augmentation GAN-augmentation GAN-augmentation

Dataset
AD BE

LeNet-5 AlexNet LeNet-5 AlexNet LeNet-5 AlexNet LeNet-5 AlexNet
Parameters Parameters

MICCAI BSA FA 0.81 0.82 0.83 0.83 0.89 0.88 ? 0.93 0.91

Augsburg FA BSA 0.73 0.73 0.75 0.83 0.88 0.87 0.90 0.86

tuning process, FA and BSA provided the best results for both datasets, sug-
gesting the best performance for BE and adenocarcinoma high-quality and trust-
worthy sample generation for classification purposes. Such procedures provided
improvements compared to previous works, suggesting the importance of enough
data and CNN generalization ability to deal with BE and adenocarcinoma dis-
tinction problem. In regard of future works, we intend to evaluate fine-tuned
GAN to generate full-image samples, aiming to reinforce the impact of the best
hyperparameter selection in the synthetic image generation quality.
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