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Abstract. The first step in automated analysis of medical volumetric
data is to detect slices, where specific body parts are located. In our
project, we aimed to extract the pelvis regionfrom whole-body CT scans.
Two deep learning approaches, namely, an unsupervised slice score re-
gressor, and a supervised slice classification method, were evaluated on a
relatively small-sized dataset. The result comparison showed that both
methods could detect the region of interest with accuracy above 93%. Al-
though the straightforward classification method delivered more accurate
results (accuracy of 99%), sometimes it tended to output discontinuous
regions, which can be solved by combination of both approaches.

1 Introduction

For efficient analysis of medical images, it is beneficial to pre-extract the region of
interest for further processing steps. This allows for the reduction of the amount
of data, so that subsequent computations are boosted and possible errors are
reduced. This is especially important if the number of slices comprising the
region of interest is relatively small, when compared to the complete sequence
size.

In the literature, the approach of labeling the anatomical regions is referred
as bodypart recognition. It serves as an initialization module for anatomy de-
tection or segmentation algorithms [1]. Classical approaches utilized extensions
to Generalized Hough Transform (GHT) [2] for such a task. For instance, Seim
et al. [3] followed the approach of Khoshelham [2] to localize the pelvic bone
for further segmentation. However, Seim et al. stated that the performance of
the GHT strongly depends on the quality of the template shape and the speed
is rather low, since it is a brute force method. Since the ultimate goal of our
project is to analyze data with multiple fractures and mislocated bones, such a
method might fail in localization of the pelvis region.

Deep learning methods that do not require any prior knowledge of the data
can be roughly separated into two categories: supervised classifiers, which are



2 Ivanovska et al.

trained on labeled images, and unsupervised regressors, where the anatomical
landmarks are learned from the slice ordering. Roth et al. [4] used labeled CT
scans from 1675 patients to train a convolutional neural network (CNN) to differ-
entiate between 5 classes (neck, lung, liver, pelvis, legs). Yan et al. [1] proposed
a multi-stage deep learning framework to discover local discriminative patches
and build local classifiers to differentiate between 12 anatomical classes using
data from 675 patients. Yan, Lu, and Summers [5] proposed an unsupervised
body part regressor that constructs a coordinate system for the human body
and outputs a continuous score for each axial slice, representing the normalized
position of the body part in the slice. These so-called slice scores are learned
from intrinsic structural slice ordering information in CT volumes. The main
advantage of this approach is that it does not require labeled data for training.

For our application, the pelvis region detection is required in the first step,
and other anatomical classes can be disregarded at the moment. We utilized
whole-body computed tomography (CT) data [6] of ≈ 100 patients. As this
was a relatively small dataset, the goal of our study was to explore the priority
approach for extraction of pelvis with limited data. We analyzed two deep
learning approaches. The first method is an unsupervised body-part regressor
proposed by Yan, Lu and Summers [5]. The second method uses a classical VGG-
based convolutional neural network [7] for slice classification task, which can be
considered a simplified version of the approach by Roth et al. [4]. We applied
both methods to our dataset, present the results, and analyze the findings.

2 Materials and Methods

2.1 Materials

The study was approved by the local ethics committee of University Medicine
Göttingen (RefNo: 1-5-19). Anonymized whole-body CT data of 93 patients
were included into the project.

Several example slices from different patients are presented in Fig. 1. The
data were converted to a standardized slice thickness of 5 mm. The spatial
resolution was 512 × 512 and the number of slices varied for each patient. The

Fig. 1. Three example slices depicting pelvis region.
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average slice number was 236 ± 56, and the median slice value was 234. It can
be observed that pelvis region occupies 43± 2.2 slices, i. e. ≈ 5

6 of the slices can
be potentially disregarded in subsequent processing steps.

The data were split into training, validation, and test sets patient-wise. 10
and 9 patients were put to the test and validation sets, respectively, the 74
scans were used for training. Pelvis region in each dataset was identified by an
experienced observer.

2.2 Methods

Unsupervised Body Part Regressor is a novel learning method that learns the
body part knowledge from inter-slice relationships in a self-organization pro-
cess [5]. It has six convolutional layers from a standard network (VGG16), a
global average pooling layer and a fully connected layer, which outputs the score.
A novel loss function that consists of two terms serves for efficient learning. Yan,
Lu and Summers collected around 800 CT data from 420 subjects. They also
provided an open source implementation of their method [8]. We re-implemented
the method in pytorch using the original source code and the implementation by
G. Chartrand [9], which was trained and evaluated on the IRCAD dataset [10].
It was suggested in the original publication to reduce the width and height of
slices. We have also observed in our experiments that usage of smaller input
image sizes produces more accurate results. Therefore, the original data were
resized to 64 × 64. The image intensities in Hounsfield units [11] were clipped
to a range of [−300, 300] to provide more contrast to soft tissues. Thereafter,
intensities were scaled to a range of [0, 1] and tripled in order to create a mul-
tichannel image. One third of the training volumes were augmented by shifting
the individual slices to the left and right, as well as up- and downwards. The
amount of shifting are randomly chosen for each individual volume and ranged
from [10, 70] pixels. Training runs were initialized using the same parameters
found in [9], with the exception of the batch composition. Here, batches con-
sisted of 12 different volumes each represented by 14 equidistantly spaced slices.
After obtaining the scores, a histogram-based method was applied to compute
the slice values for each region in a volume. For more details, we refer to the
original work [5].

VGG-based Slice Classifier was built using VGG11 [7], the lightest model from
the VGG family. The model consisted from 11 weight layers and 5 pooling layers:
eight convolutional layers, each followed by a ReLU activation function, five max
pooling operations, each reducing feature map by 2, and three fully connected
layers. All convolutional layers had 3 × 3 kernels. The first convolutional layer
produced 64 channels and then, as the network deepened, the number of channels
doubled after each max pooling operation until it reached 512. On the following
layers, the number of channels did not change.

We replaced the last classification layer to a layer for 2 class classification, and
used the Imagenet weights. The standard augmentation tools, such as scaling,
rotation, horizontal and vertical flips were applied to the data. The input image
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Table 1. µ± σ metrics for validation and test sets for both approaches.

TP FP TN FN A P R F1

Unsupervised Body Part Regressor

Validation Set

36 ± 6.4 7.2 ± 5.8 174 ± 57 7.6 ± 6 0.93 ± 0.05 0.84 ± 0.1 0.83 ± 0.1 0.83 ± 0.1

Test Set

34 ± 4.9 4.8 ± 7.1 174 ± 44.5 9.8 ± 4.8 0.93 ± 0.05 0.9 ± 0.1 0.78 ± 0.1 0.82 ± 0.08

VGG Classifier

Validation Set

42.6 ± 3.1 0.7 ± 0.9 187 ± 57.4 0.2 ± 0.4 0.99 ± 0.02 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.01

Test Set

43.4 ± 1.8 0.3 ± 0.5 179 ± 41 0.3 ± 0.5 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.08

size was 224 × 224 × 3. CT data preprocessing steps were the following: the in-
tensities in Hounsfield units were clipped to a range of [0, 3000]; each volume was
z-score normalized. To make the inputs compatible with the VGG architecture,
the original images dimensions (512× 512) were resized to 224× 224, and inten-
sities were scaled to a range of [0, 1], the images were copied 3 times to be used
as a multichannel image, and then normalized using mean = [0.485, 0.456, 0.406]
and std = [0.229, 0.224, 0.225].

2.3 Evaluation Measures

The following values were used for evaluation: true positives (TP), false positives
(FP), true negatives (TN), false negatives (FN), which refer to correctly and
incorrectly classified slices, where pelvis region is located. From these values
the following metrics were computed: Accuracy A = TP+TN

TP+TN+FP+FN , Precision

P = TP
TP+FP , Recall R = TP

TP+FN , and F1 score F1 = 2TP
2TP+FP+FN .

3 Results and Discussion

The unsupervised regressor was trained for 50 epochs with the following param-
eters: batch dimensions g = 12,m = 14, Adam optimizer with lr = 0.0001. The
VGG classifier was trained starting from ImageNet weights for 20 epochs using
Adam optimizer with lr = 0.0001 and batches of 64 images. The results are
summarized in Table 1.

As it can be observed in Table 1, the VGG classifier produced highly accurate
results with maximally two false positive and one negative slices per patient.
In most cases misclassifications appear at the beginning or the end of pelvis
region. An illustrative example is presented in Fig. 2. Actually, the errors of
the predictions (left and right slices in Fig. 2) contain some minor parts of the
pelvic bones, and thus, the expert had possibly not always marked them for
all datasets consistently. We leave the investigation of inter- and intra-observer
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variability for future work. The standard deviation in TP and TN is explained
by the fact that the number of slices occupied by pelvis region differed for each
patient.

Although the unsupervised regressor was able to find the correct regions
as presented in Fig. 3, the results had significantly lower rates than by the
supervised classification method (cf. Table 1). This is probably explained by
the fact that we used about 10 times less data for training, when compared to
the original publication, namely, 73 vs. 800 volumes.

However, the classification-based approach suffered from one drawback: since
the method considers only 2D slices and no 3D information is taken into account,
it can potentially produce disjoint regions, e. g., miss some slices within or detect
something outside the region of interest. For instance, the classifier in some rare
cases detected several slices in the shoulder region and marked them as pelvis,
since it visually reminded the lateral parts of pelvic bones. The probability

Fig. 2. Predictions of the VGG-based classifier. Left: false positive slice at the be-
ginning of pelvis; middle: correct prediction; right: false negative slice at the end of
pelvis.

Fig. 3. Results of the unsupervised regressor detection overlaid with data from three
patients are shown. The algorithm detection of pelvis region is marked in red, the
expert readings are shown in green.
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values of the classification were similar to the ones at the end of the pelvis
region and no straightforward thresholding was possible. This problem could be
solved by using a combined approach, where the results from both methods are
considered together, since the unsupervised method produces one continuous
region by definition. We plan to add more training data to the unsupervised
regressor and leave the extension for future work. Moreover, we also plan to
investigate, how well such an approach would perform, when more regions in the
body must be localized.

4 Conclusion

In this study we compared two deep learning approaches for the task of body
part detection: an unsupervised regressor and a slice classification network, to
label pelvic bones in whole-body CT data with a relatively small dataset. Even
with this small amount of data, the accuracy was already high. This suggests,
that given more training data and combining both methods, such an approach
will presumably lead to efficient and reliable reduction of data for analysis of
CTs of the pelvis.
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