On Efficient Extraction of Pelvis Region from CT Data

Tatyana Ivanovska¹, Adrian O. Paulus¹, Robert Martin^{2,3}, Babak Panahi², Arndt Schilling³

¹Department for Computational Neuroscience, Georg-August University; ²Institute for Diagnostic and Interventional Radiology, University Medicine, Göttingen; ³Clinic for Trauma Surgery, Orthopaedics and Plastic Surgery, University Medicine, Göttingen

Introduction

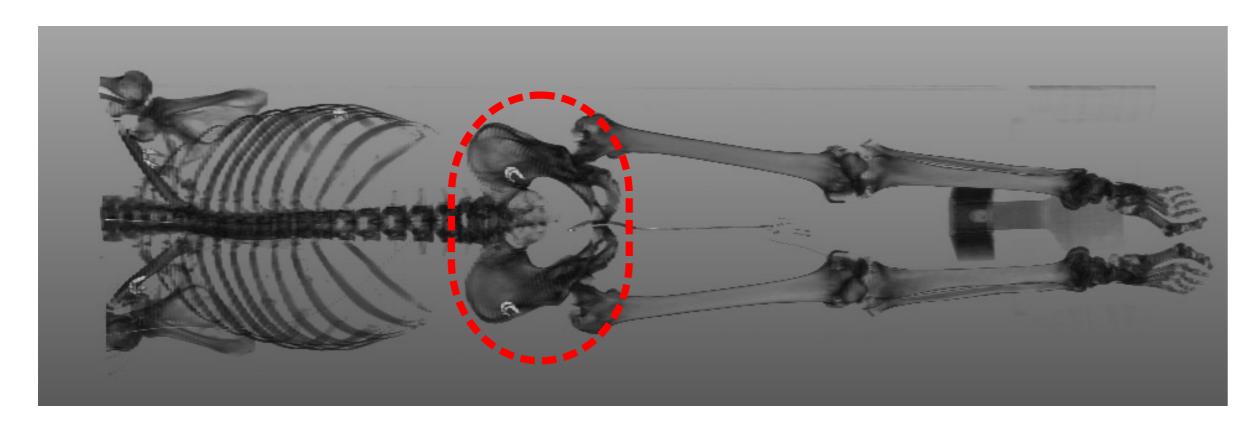
- Body part recognition is the first step in automated analysis of medical volumetric data.
- Goal: detection of slices, where specific body parts are located.
- Main Deep Learning approaches:
 - Supervised Classifier [1]
 - Unsupervised Body Part Regressor (UBR) [2]

Objective

- Comparison of two body part recognition methods on limited data
- Extraction of a single region (pelvis) from CT data

Data

- 93 whole-body CT datasets [3] without fractures of pelvis;
- Annotations of pelvis by an experienced observer;
- \triangleright Spatial resolution: 512 \times 512; with slice thickness of 5 mm;
- Number of slices varied for each patient; average slice number: 236 ± 56 ;
- \blacktriangleright Pelvis occupies on average of 43 \pm 2.2 slices.



Methods

1. Minibatch

- Classifier: Randomly selected volume, randomly selected 2D slices;
- ▶ UBR: Randomly selected volume, equidistant 2D slices;

2. Architecture

- Classifier: ImageNet pre-trained CNN (VGG Family [4]); the last layer for binary classification;
- ▶ UBR: Classifier: ImageNet pre-trained CNN (VGG Family [4], 5 layers); Global average pooling and a fully connected layer for regression output;

3. Output

- Classifier: Probability that the slice belongs to pelvis;
- ▶ UBR: a score indicating position of the slice in the body.

Training and Testing

- Validation: 9 patients; Test: 10 patients
- Training: 74 patients
- Classifier:
- \triangleright Slices resized to 224 \times 224;
- ▶ Intensities clipped [0,3000] to remove high intensity artifacts
- Intensities scaled to [0, 1];
- ImageNet normalization;
- Standard augmentation: scaling, rotation, horizontal and vertical flips;

UBR

- \triangleright Slices resized to 64 \times 64;
- \triangleright Image intensities in Hounsfield units clipped to [-300,300];
- Intensities scaled to a range of [0, 1];
- Augmentation: translation in four directions;
- A histogram-based method for converting scores to region boundaries.

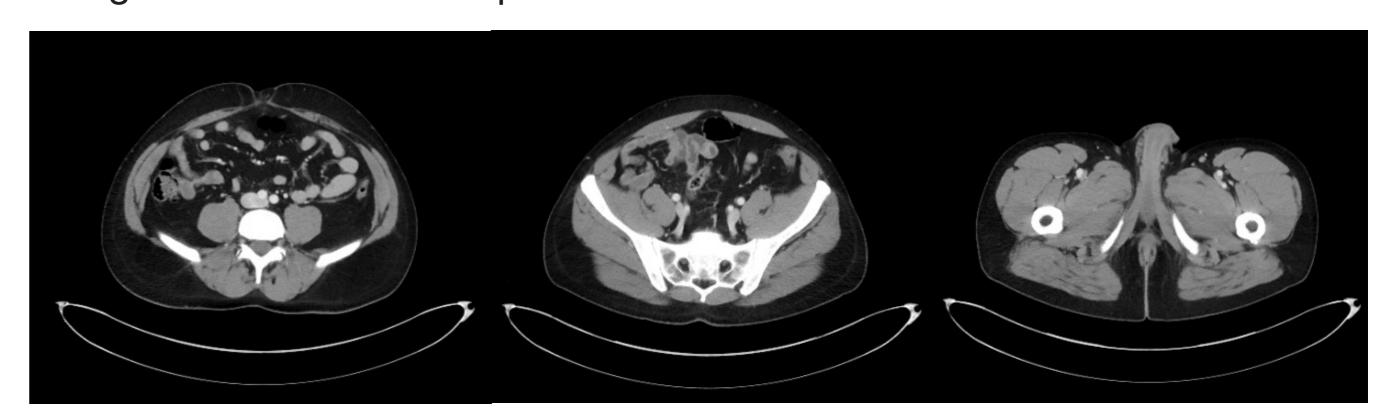
Results

- Classifier: highly accurate results
 - On Test and Val sets: not more than two errors per patient
 - Usually misclassifications lie in the starts and ends of pelvis regions
 - ▷ 2D classifier can produce disjoint regions, return FP in other body parts!
- ► UBR: on the current amount of data only roughly identifies Pelvis region
 - ▶ But always returns *one region* by definition!

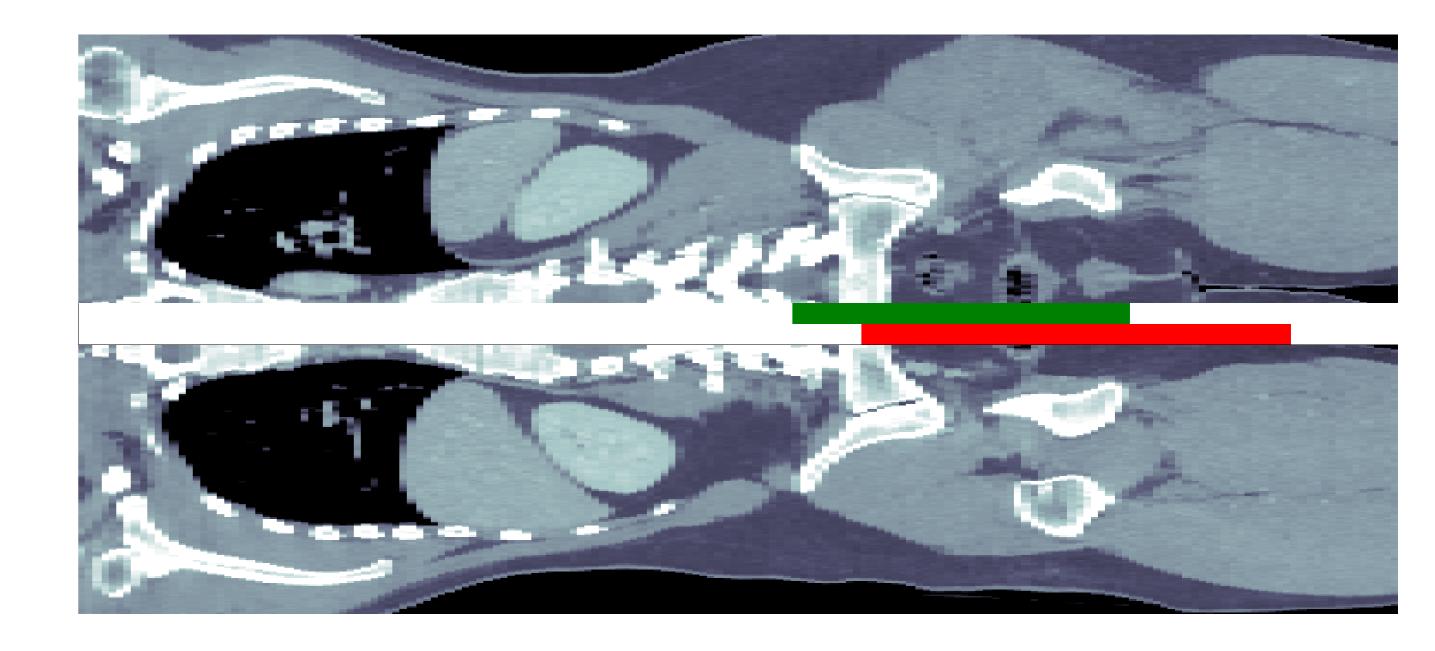
		UBR validation set	UBR test set	VGG validation set	VGG test set
	TP	36 ± 6.4	34 ± 4.9	42.6 ± 3.1	43.4 ± 1.8
	FP	7.2 ± 5.8	4.8 ± 7.1	0.7 ± 0.9	0.3 ± 0.5
	TN	174 ± 57	174 ± 44.5	187 ± 57.4	179 ± 41
	FN	7.6 ± 6	9.8 ± 4.8	0.2 ± 0.4	0.3 ± 0.5
	Α	0.93 ± 0.05	0.93 ± 0.05	0.99 ± 0.02	0.99 ± 0.01
	Р	0.84 ± 0.1	0.9 ± 0.1	0.98 ± 0.02	0.99 ± 0.01
	R	0.83 ± 0.1	0.78 ± 0.1	0.99 ± 0.01	0.99 ± 0.01
	F1	0.83 ± 0.1	0.82 ± 0.08	0.99 ± 0.01	0.99 ± 0.08

Examples

- Classifier results
 - Left: FP in the beginning of pelvis,
 - Middle: TP in the middle of pelvis,
 - Right: FN in the end of pelvis



- ▶ UBR results
- Green: user annotations
- ▶ Red: automatic detection
- Pelvis regions is roughly detected.



Summary and Future Work

- Compared two deep learning approaches for body part detection;
- Results for labeling of pelvic bones;
- High accuracy even on relatively small dataset;
- Hence: Larger dataset and combination of the two approaches will presumably lead to efficient and reliable reduction of CT data for analysis of pelvis.

Future Work:

Combination of the two approaches (verification of classification results with UBR).

References

- [1] H. R. Roth, C. T. Lee, H. Shin, A. Seff, L. Kim, J. Yao, L. Lu, and R. M. Summers. Anatomy-International Symposium on Biomedical Imaging (ISBI), pages 101–104, 2015. doi: 10.1109/ ISBI.2015.7163826.
- [2] Ke Yan, Le Lu, and Ronald M Summers. Unsupervised body part regression via spatially selfordering convolutional neural networks. In IEEE 15th International Symposium on Biomedical

Imaging (ISBI 2018), pages 1022-1025. IEEE, 2018.

- specific classification of medical images using deep convolutional nets. In 2015 IEEE 12th [3] Bryant Furlow. Whole-body computed tomography trauma imaging. Radiol Technol, 89(2): 159CT-180CT, 2017.
 - [4] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.